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ABSTRACT 

The mitogen-activated protein kinase (MAPK) 

family of enzymes regulates a wide range of 

cellular behaviours in response to environmental 

stimuli. p38 MAPKs are key signalling molecules 

that regulate pro-inflammatory cytokines and 

cellular responses to environmental stresses. It 

makes sense that p38 might be effective for treating 

a range of ailments, including cancer, 

immunological conditions, and inflammation, given 

that p38 regulates so many distinct processes. In 

addition, increasing evidence points to the p38 

MAPK signalling cascade's involvement in 

biological processes other than inflammation, such 

as cell proliferation, differentiation, apoptosis, and 

invasion, suggesting that the p38 MAPK could be 

used as a potential therapeutic target for the 

management of both inflammatory diseases and 

cancer. 
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I. INTRODUCTION/BACKGROUND 
The mitogen-activated protein kinase 

(MAPK) p38 is sometimes referred to as the stress-

activated MAPK due to its sensitivity to cytokines 

and cellular stress. However, P38 also serves other 

physiological functions. The terminal kinase in 

numerous signalling cascades is P38, a MAPK that 

is triggered by two phosphorylation’s. Effective 

stress management is essential for cell and 

organism survival because, despite the fact that 

most cells experience different types of stress 

throughout their lifetime, in both pathological and 

homeostatic settings, stress may be harmful. The 

signalling networks that cell use to react to stress 

depend on P38 kinases. Many signalling networks 

are essential to cells. All eukaryotes have proline-

directed serine/threonine kinases, commonly 

known as p38 kinases, which belong to the yeast-

like mitogen-activated protein kinase (MAPK) 

family and share structural and regulatory 

similarities with yeast. Many studies have now 

shown a link between p38 kinase and cellular 

responses to most stimuli, including wounds from 

both internal and external sources, healthy 

activities, and diseases including infections and 

cancer. Yet causing stress from such cell 

differentiation (1-6) The extracellular environment 

is always changing, and MAPK serves as a marker 

of these changes. This causes cellular responses 

that enable cells to adapt to these changing normal 

and pathological situations. The target genes of 

transcription factors, cytokines, and their surface 

receptors are activated by p38 MAPKS, acting as a 

"kill switch" to enable a complete cellular response. 

Hence, these proteins are seen as potential 

therapeutic targets to fight the ineffective 

inflammatory response. 

 

Family members of the p38 kinase 
The first mammalian p38 protein is a 38 

Kdaprotein that is induced by lipopolysaccharide 

(LPS) (7) to become tyrosine phosphorylated, 

according to four independent experiments. 

CSBP2, a protein kinase that is triggered by arsenic 

acid, heat shock, or osmotic stress, and RK (8), an 

anti-inflammatory drug with properties similar to 

those of SB203580's pyridinylimidazole. Remarks 

on (9), and saccharomyces cerevisiae.  A MAPK 

called HOG1 has been shown to imitate the 

proteins p38, RK, p40, and CSBP2 and help in the 

defence against osmotic stress. The designations 

p38β, p38γ, and p38δ were later given to other 

proteins that had a lot of similarities with the 

protein known as p38α. CSPB1 (10), 

EXIP12,MXI2 (11-12) and p38 are examples of 

spliced variations of p38α that have been proven to 

function and contribute to cellular pathology. 

Mammalian P38 kinases are 60% homologous in 

amino acid sequences and p38αis 75% similar to 

p38β and p38γ being 75% similar to p38δ. While 

the p38kinases are structurally identical, their 

downstream targets and susceptibilities to 

pharmacological inhibitors like the frequently used 

SB203580 differ (13-14). A biological enzyme 
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having several roles in tissue growth and 

homeostasis is p38 kinase. There are clear 

functional differences among family members. Due 

to its critical role in placental morphogenesis, P38α 

is the only p38 kinase required for mouse 

embryonic development (15-17). Yet, when p38α is 

present, p38β overlaps significantly (18-19). This 

can be because p38α is expressed more often in 

most cell types, but it might also be because of the 

specific roles that p38α might perform. This 

restores the mice's lack of p38β participation Yet, 

studies utilizing cell culture have identified certain 

tasks that p38β may excel at. Generally speaking, 

p38α and p38β work in concert to develop the heart 

(20-21), establish sex (22), prevent mitotic entrance 

(23), and activate regulatory T cells (24). While 

neither p38γ nor p38δ has been genetically shown 

to perform p38α function . p38γ and p38δ often 

play comparable functions, such as in tissue 

regeneration and immune responses (25). It's 

noteworthy to note that decreasing p38α might 

increase p38γ activation or p38δ activation(26-28). 

The upstream regulatory mechanisms vary from 

other family members. More understanding of the 

individual behaviours and functional relationships 

of the four p38 kinases is required in order to 

completely appreciate the biological function of 

this signalling pathway. 

 
Figure:1 Schematic representation of the p38 mitogen-activated protein kinase signalling pathway. 

 

P38 kinase-mediated signalling 

 The activity of p38 kinases may be 

controlled by feedback loops, activated by specific 

kinases that integrate many inputs, inactivated by 

various phosphatases, and impacted by a variety of 

translational routes that affect various signalling 

pathway components. 

 

Activation of the p38 MAPK signalling pathway 

and its operation 

A lot of research has accumulated on the 

activation of p38 MAPK in inflammatory responses 

since the discovery of mammalian p38 MAPK 

during inflammation. Proinflammatory cytokines 

that activate p38 MAPK include interleukin and 

TNF- [29–30]. G-protein-coupled receptors 
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(GPCRS), cytokine receptors, toll-like receptors, 

growth factor receptors, and receptors connected to 

environmental stress, such as heat shock. Radiation 

and UV light are reportedly additional signalling 

events that activate the p38 MAPK pathway 

[31,32,33]. It should be emphasized that the level 

of p38 MAPK activation depends on the type of 

cell [34,35]. There is evidence that some p38 

MAPK isoforms are selectively activated by 

upstream kinases [36–39]. The upstream MAPK 

kinase (MKK) is involved in the activation of p38 

MAPK [40, 41]. Whereas MKK3, which is 80% 

homologous to MKK6, activates all four of her p38 

isoforms, MKK3 promotes p38α, p38γ, and p38δ. 

According to various studies [41–45], MKK6 is the 

main activator of p38α MAPK. MKK4 also 

phosphorylates p38α and p38δ in certain cells in 

response to particular stimuli [36]. There are 

several signalling channels that link the MKK/p38 

network. In human 293T kidney cells, MKK7 

activates p38δ [37]. It has been discovered that 

RAC and Cdc42 may act as regulators of the p38 

MAPK signalling pathway. IL-1 does not increase 

p38 MAPK activity when RAC and Cdc42 are 

dominant-negative constructs, but p38 MAPK is 

activated when these two proteins are co expressed. 

[46-47]. Our laboratory's studies have shown that 

mutant H-Ras essentially activates p38 MAPK in 

human mammary epithelial cells [48]. The 

p38mapk signalling pathway involves both small 

and giant G proteins, including GPCRSand 

regulatory G protein signalling proteins (RGS) [49–

50]. The MAPKAP kinases MK2, MK3, and p38 

regulatory/activated kinase (PRAK), which it 

preferentially phosphorylates, are downstream 

substrates of p38-MAPK. Comparatively to MK3- 

and PRAK-deficient animals, MK2-deficient mice 

produced much fewer cytokines, such as TNF-a 

and IL-6, and they were less resistant to endotoxic 

shock [51–52]. P38 MAPK and MK2 were shown 

to be pre-assembled in cell nuclei [53]. When p38 

is phosphorylated, MAPK MK-2's nuclear export 

signal is moved to the carboxyl-terminal domain, 

allowing it to travel between the cytoplasm and 

nucleus [54]. The fact that MK2 has to be 

phosphorylated in order for p38 MAPK and MK2 

to exit the nucleus is proof that this step is 

necessary for the translocation mechanism [53]. 

MK3, a protein kinase that interacts with p38α, has 

also been shown to be a substrate for p38α [55]. 

P38α and p38β may activate the stress-induced 

protein PRAK [56]. 

 

 

Activation mechanism 
The simultaneous phosphorylation of 

MAP2K, followed by the phosphorylation of 

MAP3K, activates P38 kinase. The activation of 

p38 kinase has been demonstrated to include up to 

10 MAP3Ks, even if some of them may also 

activate other MAPKS, most notably JNK. The 

diversity of the upstream components of the p38 

kinase cascade allows the signalling pathway to 

adapt to a range of stimuli and provide flexibility in 

response. Several signals are used to activate a 

number of MAP3Ks. MKK3 and MKK6 of 

MAP2K, which share 80% of their amino acid 

sequence and are highly selective for p38 kinase, or 

MKK4, which typically activates JNK but may also 

activate p38α, are phosphorylated by MAP3K. 

Oxidized (17). Depending on the cell type and 

external stimuli, MAP2K is involved in p38 kinase 

activation in a variety of ways. For the kinase to 

work properly, MAP2K must phosphorylate the Thr 

and Tyr residues (Thr180 and Tyr182) in the p38α 

activation loop. The common phosphorylation 

cascade that occurs in the majority of MAPKSis a 

typical activation mechanism for them. Together 

with the phosphorylation cascade based on 

MAP2K, there are two other pathways that might 

activate p38. One is in charge of attaching to 

transforming growth factor-activated kinase 1, 

while the other is in charge of interacting with 

TAB1, which results in p38α autophosphorylation. 

(56). This mechanism in cardiomyocytes during 

myocardial ischemia has been well studied (57-59). 

Moreover, dermatitis (60), endothelial 

inflammation brought on by G protein-coupled 

receptor agonist (GPCR), white adipose tissue 

darkening produced by triiodothyronine (61), T cell 

aging (62), and is also connected. The usual 

technique may be used by TAB1 to bind MAP3K 

TAK1 and activate p38. The only T cells in her that 

seem to engage her third non-canonical pathway of 

p38α activation are those that have been activated 

by the T cell receptor. This has ZAP70, which 

phosphorylates Tyr323 to produce p38α and p38β 

autophosphorylation (64). Tyr323-induced 

autophosphorylation of p38α occurs just at Thr180 

as opposed to the conventional method in which 

p38α is dual phosphorylated by MAP2K and this 

monophosphorylated p38 α alters substrate 

selectivity in vitro. (65). Different activation 

methods provide more control over pathway-

modifying activity, improved selectivity in locating 

relevant targets, and more control over responses in 

a variety of cell types and environments. 
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Signal termination  

As over activating p38 often has 

detrimental effects on the cell, signal termination 

systems are essential for maintaining homeostasis. 

The p38 activation loop may be phosphorylated by 

a variety of phosphatases, including as 

serine/threonine phosphatases, tyrosine 

phosphatases, and dual-specificity DUSP/MKP 

family phosphatases. The possibility that p38 

signalling may activate DUSP1, resulting in a 

negative feedback loop that might produce 

asynchronous oscillations and cell-to-cell 

variability in p38 activity, is fascinating to note. It 

has been shown that both stress-induced cell death 

and the production of pro-inflammatory genes rely 

on this. (66-68). The restriction of MKK6 (69), 

phosphorylation of TAB1 (which may affect both 

non-canonical and TAK1-mediated canonical 

activation (70), and phosphorylation of ZAP70 

(which may affect the Association of ZAP70 with 

shortens the TCR and reduces p38α activation in T 

cells) (71) are additional negative regulatory loops 

that p38α may activate. The strength of the p38α 

signal may also be affected by negative feedback 

loops. The p38 activation loop must be 

dephosphorylated in order to downregulate the 

coupling pathway. 

 

P38 in various diseases  

Increasing evidence points to the p38 

MAPK signalling pathway as a cause of cancer and 

inflammatory diseases. To investigate the role of 

p38 MAPKSin a variety of illnesses and to take 

their inhibitors into account as potential treatment 

strategies. Monocytes, synovial cells, and cultured 

alveolar macrophages from guinea pigs all express 

proinflammatory cytokines such TNF-, IL-1, IL-2, 

IL-6, IL-7, and IL-8. The proliferation and 

differentiation of immune system cells are also 

controlled by the p38mapk signalling pathway. It 

operates, displays, and contains endothelial cells. 

GM-CSF, CSF, EPO, and CD40-stimulated cell 

proliferation and/or differentiation are mediated by 

the p38 MAPK. MMP-2, MMP-9, and MMP-13 are 

only a few MMPSlinked to inflammation whose 

expression is regulated by the p38 MAPK pathway 

[72,75]. Moreover, p38-MAPK regulates the 

production of RANKL to prevent the development 

of osteoclasts and prevent bone resorption. (76) 

Enhanced p38 signalling may not always be the 

underlying cause of a given sickness, even while 

elevated p38 phosphorylation is often detected in 

disease conditions. P38 activation in this case could 

not even be a consequence, but rather a 

pathogenesis-related outcome. Yet, when a disease 

worsens, p38 may take on new functions that 

encourage pathogenesis while lowering pathway 

activity. Can. Yet, aberrant p38 activation often has 

unknown reasons. 

 

The role of p38 in asthma  

Wheezing, chest tightness, dyspnoea, and 

prolonged coughing are some of the signs of 

asthma [77]. Asthma is an allergic reaction that 

causes airway inflammation and irritation. Type 2 

(Th2) mast cells, B cells, eosinophils, and helper T 

cells all contribute to the development and 

maintenance of allergy-related asthma. Th2 cells 

emit pleiotropic cytokines including IL-4, IL-5, and 

IL-13 when they become activated, which regulates 

B cell proliferation, IGE production, airway 

eosinophilia, mucus secretion, and ultimately 

results in airway hyperresponsiveness (AHR) (78). 

The p38-MAPK signalling pathway, which is 

involved in the generation of inflammatory 

cytokines and environmental stress, may be related 

to autoimmune diseases, asthma, and both [79]. A 

variety of in vitro and in vivo models of 

inflammation, as well as their use in the treatment 

or management of illnesses like asthma, have 

shown the efficacy of p38 MAPK inhibitors. It has 

been shown that SB203580 reduces TNF-a and IL-

1b production in rat bronchoalveolar lavage (BAL) 

fluid [80,81]. Another p38 MAPK inhibitor, 

SB239063, reduced the levels of IL-8, IL-6, MMP-

9, and neutrophil infiltration in the rat BAL fluid 

after endotoxin inhalation. (82) 

 

Role of p38 in COPD 

Chronic obstructive pulmonary disease 

(COPD) is characterized by a growing obstruction 

of airways and an abnormal inflammatory response 

of the lungs to potentially harmful substances or 

gases. Current therapies are unable to stop the 

progression of COPD or the inflammation of the 

small airways and lung tissue. Nowadays, clinical 

research is being undertaken on a variety of 

cutting-edge anti-inflammatory drugs. One of the 

several complex enzymatic cascades that contribute 

to COPD inflammation is the p38-MAPK pathway. 

It is triggered by cellular stress and regulates the 

release of pro-inflammatory cytokines including 

IL-8, TNF-, and MMPS. Patients with COPD have 

selectively higher levels of certain p38 isoforms in 

their alveolar macrophages. This implies that with 

the onset of COPD, the p38 MAPK signalling 

pathway is active. The pharmaceutical target p38 

MAPK for the treatment of COPD is a promising 
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one, according to these data. A multitude of COPD 

symptoms, including mucus overproduction and 

secretion, inflammation, cytokine expression, 

apoptosis, T-cell activation, matrix 

metalloproteinase production, and fibrosis, have 

been associated to COPD activation, constitutive, 

according to recent research by Connecting. Small-

molecule p38 MAPK inhibitors were used to 

further validate these results [84]. A few examples 

of small molecule p38 MAPK inhibitors with anti-

inflammatory properties include SB-203580, SB-

239063, and RWJ-67657. 

 

Role of p38 in kidney diseases  

Immunostaining of human biopsy 

specimens showed considerably more p-p38+ cells 

in the glomeruli and tubules as well as interstitial p-

p38+ cells in proliferative glomerulonephritis. (85). 

Myofibroblasts that were positive for muscle actin 

(SMA+), invader neutrophils and macrophages, 

and kidney-specific cells all had p38 activation. 

Rice field. The number of p-p38+ glomerular cells 

correlate with crescent development, segmental 

proliferative and necrotic lesions, and macrophage 

accumulation. The level of interstitial inflammation 

is also correlated with interstitial p38 activation 

(86-87). Moreover, the quantity of p-p38+ 

podocytes, tubules, and interstitial cells as well as 

the number of p-p38+ glomeruli, tubules, and 

interstitial cells were associated with proteinuria 

and renal failure. With respect to the severity of 

tubulointerstitial lesions, the frequency of p-p38+ 

tubulointerstitial cells correlates, and diabetic 

nephropathy in both humans and animals is 

associated with a significant rise in p-p38 

activation. (88). These studies suggest that p38 

activation may be a substantial pathogenic factor in 

human renal disease. Research has also been done 

on the connection between JNK signalling activity 

and human kidney illness. Many types of 

glomerulonephritis, hypertension, and diabetic 

nephropathy show drastically enhanced JNK 

activity based on immunostaining of 

phosphorylated-c-Jun, a distinct hallmark of JNK 

signalling. (89). Glomerular structures JNK 

signalling has been connected to the 

pathophysiology of numerous types of human renal 

disease, and p-c-Jun staining in the 

tubulointerstitium correlates with interstitial 

fibrosis and renal failure. In actuality, the degree of 

glomerulosclerosis is correlated with the number of 

glomerular p-c-Jun+ cells. 

 

 

P38 and cardiovascular conditions 
 The modulation of cardiomyocyte 

fibrosis, hypertrophy, and death by p38α may have 

an effect on heart failure (90). The fact that heart 

diseases like atherosclerosis and myocardial 

ischemia (90-91) often coincide with activation of 

this system supports the therapeutic use of p38α 

inhibitors. P38 inhibitors were ineffective in 

reducing the incidence of major ischemic 

cardiovascular events, while being well tolerated in 

phase III clinical trials and reducing certain 

inflammatory components (92-93). A different plan 

of action, B, has been suggested. Targeting of 

TAB1-induced p38α activation coupled to MK2 

inhibition (94) or cardiomyocyte death during 

ischemia-reperfusion (95). Yet, given the many 

preclinical studies highlighting the benefits of 

reducing p38 signalling, p38 signalling inhibition is 

supported by the associated advantages. 

 

Role of p38 in rheumatoid arthritis  

A persistent systemic inflammatory 

condition called rheumatoid arthritis may cause 

damage to many tissues and organs. The result is 

swelling in the internal organs and/or the lining of 

the joints [96]. In preclinical studies, small-

molecule inhibitors of the RA-related p38 MAPK 

signalling pathway have shown therapeutic 

potential [97, 98]. SB203580 and SB220025 were 

successful in treating arthritis brought on by 

collagen in mouse models. These components 

slowed the spread of the sickness [99,100]. When 

used as an adjuvant, the pyridinylimidazole 

SB242235 reduces TNF- and has anti-arthritic 

properties [101]. R-130823 prevented mice from 

developing arthritis caused on by collagen by 

reducing hind paw oedema [102]. 

 

P38 in inflammatory bowel syndrome 

Many inflammatory disorders that affect 

the colon and small intestine together go under the 

umbrella term "inflammatory bowel disease." In 

inflammatory bowel disease, P38. It has been 

shown that IL-23 is overexpressed in tissues from 

animal models of inflammatory bowel disease 

[103]. In terms of cellular and pro-inflammatory 

cytokine production, intestinal inflammation was 

significantly reduced by IL-23 knockdown [103]. 

Inflammatory bowel illness may start because of 

the NF-kb and MAPK cascade pathways, it has 

been shown. A recent study found that SB203580 

reduced proinflammatory cytokine mRNAlevels 

and improved histological changes in animals with 

ulcerative colitis caused by dextran sodium 
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sulphate (DSS) [104]. The Rip-like caspase-

interacting apoptosis-regulating protein kinase 

(RICK), which is highly activated by the 

experimental onset of colitis, is an essential part of 

the signalling cascade that promotes NF-kb. 

Treatment with SB203580 significantly lowers this 

activation [104]. 

 

P38 in Neuronal regulation and roles in 

neurodegenerative diseases 

Understanding neuronal excitability (105), 

synaptic plasticity (106), or myelination (107-

109)processes specific to certain neurons or glial 

cellsis essential for comprehending brain 

physiology (110). P38α is related to neuropathy as 

well. Examples include the stimulation of 

microglial p38 and the generation of pro-

inflammatory cytokines, both of which are 

associated with neuropathic pain and result in 

neuronal hyperactivity and pain hypersensitivity. 

The therapeutic potential of blocking p38α in the 

transmission of pain is being investigated in 

clinical studies (111). Nevertheless, no drugs have 

yet been approved, thus interest seems to be 

waning. Nonetheless, the therapeutic usage of p38α 

inhibitors may be used to treat neurodegenerative 

diseases. One of the early signs of Alzheimer's 

disease is the presence of phosphorylated p38α 

(112-114). The DUSP1 phosphatase is often 

downregulated in Alzheimer's patients' brains, and 

overexpressing the enzyme in mouse models 

promotes cognitive decline (115). As growing 

neuroinflammation, amyloid plaques and 

hyperphosphorylated tau protein accumulate in the 

complex disease of Alzheimer's dementia. P38α is 

one of these processes. Moreover, p38α 

suppression reduced neuroinflammation in a mouse 

model of Alzheimer's disease (116), which was 

associated with improved spatial memory. 

Preclinical studies in several animal models have 

raised the possibility that p38α is a potential 

therapeutic target for Alzheimer's disease (117-

118), ecological culture His MK2-deficient rats 

treated with neurotoxins had reduced 

neuroinflammation and less dopaminergic neuron 

loss, which provided more evidence for the 

potential benefit of inhibiting p38 signalling in 

Parkinson's disease. (119-120). Amyotrophic 

Lateral Sclerosis (ALS), which is brought on by 

motor neuron degeneration that eventually leads in 

cell death, manifests later than Alzheimer's disease 

and Parkinson's disease (121). In ALS mouse 

models and human patients, her p38α protein has 

been shown to activate both motor neurons and 

microglia (122). Inhibition of P38α in mice or 

retrograde axonal cultures of human motor neurons 

improves ALS-related abnormalities, including loss 

of survival (123-125) Moreover, p38α inhibition 

normalizes behavioural and physiological deficits 

in mouse models of autism spectrum disorders, 

indicating that this medication is efficient in 

treating this condition. The therapeutic potential of 

p38α, like that of ALS and Parkinson's disease, has 

not yet been determined. 

 

P38 in Cancer 

While p38 MAPK has been extensively 

studied for its role in inflammation, a growing body 

of research indicates that p38 MAPK also has a 

role in a variety of cellular responses related to 

cancer. Results that have been incongruent in many 

systems and circumstances have hampered our 

understanding of how p38 MAPK functions in 

cancer. Depending on the cellular environment and 

level of activation, the majority of p38 MAPK 

responses either protect cells from stress and 

stimulation or damage them. It has been shown that 

p38α is effective in stopping oncogene-induced 

malignant cell transformation in normal epithelial 

cells. This transformation may be brought on by a 

reduction in cell proliferation, an increase in cell 

death, or an increase in cell differentiation (126-

127). It was initially identified as a way to slow the 

development of Subsequent studies in animal 

models of skin, liver, lung, and colon cancer (128-

129) revealed that p38α is genetically 

downregulated, which promotes the growth of 

tumours (130). These results suggest that p38α may 

prevent tumour growth both in vivo and in vitro. 

Findings from several experimental scenarios 

suggest that malignant cells often choose this path 

to promote tumour formation. Because of this, 

studies in murine models of colon, breast, and lung 

cancer reveal that the p38α protein may activate a 

variety of pathways in cancer cells to promote the 

development of primary tumours in vivo. These 

techniques include altering DNA repair, creating 

extracellular chemicals that promote the growth of 

cancer cells, and altering internal signalling 

pathways that regulate cell survival and 

proliferation (131-132). Moreover, p38 may 

promote the development of breast, ovarian, and 

melanoma cells by concentrating on many proteins 

that regulate cell motility, extravasation, and 

epithelial-mesenchymal junctions. (133-137). It has 

been shown to restrict the early spread of HER2-

positive (also known as ERBB2) breast cancer cells 

and colon cancer cells' potential to fill the lungs of 
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liver metastases, indicating that its effect on cancer 

cell dissemination is context-dependent (138). 

Depends. Subordination (139). (139). The p38-

MSK1 axis also regulates the diffuse ER+ breast 

cancer cells latency (140). The environment that 

cancer cells encounter during the first stages of 

tumour formation and metastasis may have an 

impact on p38's regulatory role. Recently, there has 

been more focus on the function of p38α in 

interactions between cancer and non-cancer cells in 

the tumour stroma. Many ways of her P38α 

signalling in fibroblasts have the potential to 

promote the growth of tumours. Cancer cell 

metabolism can be induced by cytokines that 

mobilize glycogen inside cancer cells and release 

glucose (141), extracellular matrix remodelling by 

producing hyaluronic acid to create the tumour 

niche (142), cytokines that encourage neutrophil 

infiltration into the lung by chemokine expression 

(143), or any combination of these. In addition, 

immune cells including macrophages and dendritic 

cells have been shown to promote inflammation 

and the p38α pathway (144), which have both been 

associated to the emergence of colon cancer in 

mouse models (145). Additionally, non-canonical 

p38α activation in T cells promotes inflammation 

that supports pancreatic ductal cancer (146). 

Cancer cells also produce cytokines and 

chemokines that attract myeloid cells with tumour-

promoting characteristics to the tumour niche in 

dependence on p38229, and it has been shown that 

the p38-MK2 axis is responsible for the 

overexpression of the T-cell inhibitory protein 

PDL1 in cancer cells (147), which favours 

immunosuppressive signalling. According to the 

chemotherapy medication and tumour model, p38 

activity has been connected to the response to 

chemotherapy and has been implicated in the 

development and metastasis of malignancies. 

Oxaliplatin (148) or the nucleoside analogues 

gemcitabine and cytarabine, as well as other 

chemotherapy agents like cisplatin or 5-fluorouracil 

(149), often result in reduced cell death when p38α 

is inhibited. In vivo models are being utilized to 

better anticipate how patients will react to p38α 

inhibitors due to the diversity in p38α activity 

reported in known cancer cell lines, the 

significance of p38α in tumour stroma, and the 

involvement of stromal cells to response to crucial 

treatment. Studies using p38α inhibitors and in vivo 

chemotherapy in this region have shown 

encouraging outcomes. Pharmacological inhibition 

of p38α lowers resistance to the multikinase 

inhibitor sorafenib (150) in a liver cancer model 

and increases the cytotoxic effects of taxanes in 

mouse and human breast cancer models when 

combined with cisplatin (151). Moreover, the 

effectiveness of these targeted medications is 

increased by checkpoint kinase 1 (CHK1) 

inhibitors in KRAS or BRAF mutant tumours, or 

by Smac mimetics in leukaemia (152) or Smac 

inhibitors in leukaemia (153). Stimulates interest in 

alternatives to the present pairings. Cancer 

treatment in example, blocking the p38-MK2 

signalling pathway may shield mice from the bone 

loss brought on by chemotherapy(154). 

 

P38as a novel therapeutic  

Chronic illnesses including autoimmune 

and neurological disorders demand long-term 

therapy since p38α signalling may govern a range 

of activities, which might have negative side effects 

or indicate the need for blocking or become 

ineffective. As a consequence, when administered 

immediately in conjunction with other medications, 

p38α inhibitors may be more successful in treating 

certain disorders, such as cancer (155-156). New 

tactics are being developed to block p38α 

signalling. Agents that target p38α depletion (157) 

or have the potential to target p38α to tissues (158) 

should be researched in order to maximize 

effectiveness and reduce negative effects of 

systemic delivery. Moreover, it has been shown in a 

mouse model that lowering inflammation prevents 

p38α nuclear translocation, which exclusively 

influences testicular p38α activity. It would also be 

intriguing to investigate the potential for creating 

medications that replicate the effects of p38α 

phosphorylation on substrates of tumour 

suppressors (159-160). 

 

II. CONCLUSION: 
Key cellular pathways connected to 

inflammation and cancer involve the p38 MAPK in 

a significant way. The p38 MAPK pathway's 

characteristics with regard to activation and 

function are outlined in this review. We go through 

the special qualities of p38 MAPK and emphasise 

its role in inflammatory conditions and cancer. 
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